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Ferroelectric liquid crystals hold tremendous potential in high-
resolution microdisplay applications due to their fast response
time, wide viewing angle and bistability.1-3 Commercial FLC
mixtures for display applications are normally obtained by mixing
small amounts of a chiral dopant with high polarization power
δp into an achiral SmC host mixture with low viscosity and wide
temperature range.4 Thus, an important aspect of FLC research
over the past 15 years has focused on understanding the
relationship between the molecular structure of a chiral dopant
and the magnitude of the spontaneous polarization,PS, it
induces.5,6 According to the Boulder model for the molecular
origins ofPS, the orientational and conformational ordering of a
chiral dopant in a SmC host can be modeled by a mean-field
potential which qualitatively behaves like a binding site analogous
to that described in organic host-guest chemistry and biochem-
istry.5,7,8Within the confines of this binding site, which is shaped
like a bent cylinder withC2h symmetry, the orientational distribu-
tion of a molecule along its long axis acquires a polar character.
In the case of a chiral dopant, steric coupling to the stereocenter-
(s) causes a desymmetrization of the conformational energy
hypersurface which, in combination with the polar orientational
ordering imposed by the binding site, results in an orientational
bias of the dopant’s transverse dipole moment along the polarC2

axis (i.e., a spontaneous polarization).
Recently, we reported that chiral dopants with an atropisomeric

biphenyl core (e.g.,1) have polarization powers which depend
very strongly on the core structure of the SmC host (Type II host

effect).9 For example,δp values for1 range from<30 nC/cm2 in
a phenyl benzoate host to 1555 nC/cm2 in the phenylpyrimidine
hostPhP1.10 This host effect may be viewed as a manifestation
of molecular recognition which cannot be achieved with more
conventional dopants with chiral tails due to the higher degree
of conformational disorder among side-chains in the SmC phase.
Indeed, measurements ofδp as a function of the length of the
dopant side-chains showed that the polarization induced inPhP1
is uniquely sensitive to the positional ordering of the atropisomeric
core with respect to the core sublayer of the SmC host.9 We also
showed that an inverse relationship exists betweenδp and the
helical pitch of the induced SmC* phase, which suggests that
chirality transfer to surrounding SmC host molecules contributes
to the induction of high polarizations inPhP1.11 To explain these
results, we proposed that chirality transfer via core-core interac-
tions causes achiral distortion of the SmC binding site(Figure
1) which, in turn, increases the orientational bias of the atrop-
isomeric dopant along the polarC2 axis by virtue of diastereomeric
relationships between the chiral conformations of the dopant and
the chiral binding site (i.e., a chirality transfer feedback (CTF)
mechanism).9 In this work, we present the first experimental
evidence of a chiral distortion of the binding site in a SmC* liquid
crystal phase induced by dopant1.

The approach taken in this study is to measure the effect of
dopant1 on the polarization induced by a second chiral dopant
(probe) which mimics the structure of the hostPhP1. The
Displaytech compoundMDW950 was selected as probe dopant
because (i) it possesses a core structure similar to that ofPhP1
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Figure 1. Chiral distortion of the SmC binding site.
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and is therefore equally susceptible to chirality transfer via core-
core interactions with1, (ii) it is highly miscible in phenylpyri-
midine SmC hosts such asPhP1, and (iii) it induces a high
spontaneous polarization. In the first part of the experiment, we
obtained a reference plot by measuring the reduced polarization
(Po) of SmC* mixtures composed of the probe dopantMDW950
and PhP1 over the mole fraction range 0e x950 e 0.30.12 As
shown in Figure 2, the reference plot gives an excellent least-
squares fit (R2 ) 0.997) from which a polarization power of-435
nC/cm2 is derived.4 In the second part of this experiment, thePo

measurements which gave the reference plot were repeated in
the presence of either (+)-1 or (-)-1 at a constant mole fraction
x1 ) 0.04.13 If the atropisomeric dopant has little or no chiral
influence on the surrounding host molecules, the polarizations
induced by1 andMDW950 should be additive and produce linear
Po versusx950 plots with the same slope as the reference plot but
shifted positively or negatively by a value corresponding toPo

induced by (+)-1 or (-)-1. On the other hand, if the atropisomeric
dopant causes a chiral distortion of the binding site, the resulting
Po vs x950 plots should deviate from the reference plot due to the
influence of the chiral distortion on the orientational bias of the
chiral 2,3-difluorooctyloxy side-chain inMDW950.14

Measurements ofPo versusx950 in the presence of (+)-1 and
(-)-1 were carried out in duplicate and gave reproducible results
within ( 5%. The resultingPo versusx950 plots were found to
deviate significantly from the reference plot (see Supporting
Information). Such deviation is due in part to an achiral
contribution of the Type II host effect as the SmC host
composition changes from purePhP1to ∼70:30PhP1/MDW950.15

To determine the extent of this achiral host effect, we repeated
one series of measurements withx1 ) 0.04 using a racemic
mixture of the probe dopant instead of the enantiomerically pure
MDW950. The result of this control experiment showed that the
magnitude ofPo induced by1 gradually decreases with increasing

mole fraction of racemic probe dopant, but it cannot fully account
for the deviations observed in thePo versusx950 plots. ThePo

values measured in the probe experiments were corrected for the
achiral host effect by subtracting the corresponding negative
deviations inPo measured in the control experiment to give the
plots shown in Figure 3. For the (+)-1/MDW950 dopant
combination, the corrected plot does not deviate appreciably from
the reference plot untilx950 ) 0.30 is reached, at which point a
large positive deviation (by 175% of the reference value) is
observed. For the (-)-1/MDW950 dopant combination, a more
gradual, yet significant, negative deviation from the reference plot
(by as much as 40% of the reference value) is observed, starting
at x950 ) 0.05.

The observed deviations from the reference plot, and the
absence of reflection symmetry between the corrected (+)-1/
MDW950 and (-)-1/MDW950 plots strongly suggest that the
atropisomeric dopant causes a chiral distortion of the binding
sitesthe two enantiomers (+)-1 and (-)-1 form diastereomeric
pairs withMDW950 which must be energetically nonequivalent
in terms of their chiral interactions. Furthermore, the nonlinear
aspect of the correctedPo versusx950 plots suggests that some
cooperative effect may result from chirality transfer toMDW950
which may be unique to the structure of the probe dopant. Further
studies aimed at understanding the nature of such nonlinear effect
and establishing the generality of the CTF mechanism in the
induction of FLC phases using atropisomeric dopants are in
progress.
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Figure 2. Reduced polarizationPo vs mole fraction ofMDW950 x950

in the SmC hostPhP1 at T - TC ) -5 K.

Figure 3. Corrected reduced polarizationPo(corr) vs mole fraction of
MDW950 x950 in the SmC hostPhP1at T - TC ) -5 K in the presence
of (+)-1 (open circles) and (-)-1 (filled circles) at a constant mole fraction
x1 ) 0.04. The correction accounts for an achiral contribution of the Type
II host effect. The dashed lines correspond to the least-squares fit from
Figure 2 shifted byPo(corr) at x950 ) 0. Each plot represents the average
of two duplicate runs, which were reproducible within( 5%.
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